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to perhaps the fact that the turbulence model equations
are solved only to obtain the eddy viscosity and also theMany researchers use a time-lagged or loosely coupled approach

in solving the Navier–Stokes equations and two-equation turbu- convenience of simply adding separate routines to an ex-
lence model equations in a time-marching method. The Navier– isting Navier–Stokes code. Consequently, many codes use
Stokes equations and the turbulence model equations are solved a time-lagged or loosely-coupled approach in solving theseparately and often with different methods. In this paper a strongly

Navier–Stokes and two-equation turbulence model equa-coupled method is presented for such calculations. The Navier–
tions [7, 8].Stokes equations and two-equation turbulence model equations, in

particular, the k-g equations, are considered as one single set of In a typical iteration of a loosely coupled approach, the
strongly coupled equations and solved with the same explicit time- Navier–Stokes equations are first solved with fixed eddy
marching algorithm without time-lagging. A multigrid method, to-

viscosity and then the k-« or k-g equations are solved withgether with other acceleration techniques such as local time steps
the newly updated flow field. Different solution methodsand implicit residual smoothing, is applied to both the Navier–

Stokes and the turbulence model equations. Time step limits due are often used for the Navier–Stokes and turbulence model
to the source terms in the k-g equations are relieved by treating the equations. To some extent, the model equations look sim-
appropriate source terms implicitly. The equations are also strongly pler than the Navier–Stokes equations, particularly after
coupled in space through the use of staggered control volumes.

the convection velocities are frozen in a loosely coupledThe method is applied to the calculation of flows through cascades
algorithm. However, this does not appear to yield an easieras well as over isolated airfoils. Convergence rate is greatly im-

proved by the use of the multigrid method with the strongly coupled task for numerical solution. On the contrary, results seem
time-marching scheme. Q 1996 Academic Press, Inc. to show slow convergence or incomplete convergence due

to possible reasons such as numerical stiffness for some
models, not well-defined boundary conditions, trouble-

1. INTRODUCTION some source terms, imposed limiters on k, «, or g, and the
fact that the Navier–Stokes and turbulence model equa-

Most Navier–Stokes codes incorporate an algebraic tions are not strongly coupled in the numerical scheme. It
model initially to demonstrate their capability of solving appears that the solution of the turbulence model equa-
high Reynolds number viscous flows [1–6]. With the devel- tions has a significant effect on the final convergence of
opment of efficient numerical methods and powerful com- the complete system. This is particularly true for methods
puters, more complicated turbulence models are being that use very fine grids and integrate the model equations
used for better simulation of practical flows. Among the to the wall. Not well-solved model equations might greatly
most used turbulence models today, two-equation eddy slow down the convergence of the Navier–Stokes equa-
viscosity models appear to be favored for the reason that tions because of the strong nonlinear interaction between
they are more general than algebraic models and af- the two sets of equations. Kunz and Lakshminarayana [8]
fordable with current available computer resources. had to march up to 10,000 time steps to reduce the residuals

However, investigators using two-equation models seem for the Navier–Stokes and the k-« equations by four orders
to have been more concerned with the solution of the of magnitude and the convergence seems to hang at that
Navier–Stokes equations. Less attention is paid to the solu- residual level. In [9], Lin et al. were able to reduce the
tion method for the turbulence model equations, particu- residual by six orders of magnitude in about 6000 steps
larly their coupling with the Navier–Stokes equations due for 2D transonic flows by using a variant biconjugate gradi-

ent method.
In this paper, an efficient multigrid algorithm is devel-* Current address: Computational Mathematics, University of Colo-

rado, Denver, CO 80217. oped to solve a k-g two-equation turbulence model pro-
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posed by Wilcox [10]. The Navier–Stokes and k-g turbu- ­
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lence model equations are treated as a single set of strongly
coupled equations and solved with the same multistage
explicit time-stepping scheme. With proper construction of

1
­

­xj
F(e 1 seT)

­g
­xj
G;

the residuals and suitable implicit treatment of the source
terms, a multigrid method is applied to both the Navier–
Stokes and the k-g equations, giving excellent convergence where t is time, xi is the position vector, ui is the Favre-
properties. With the multigrid method the residuals of both averaged velocity vector, r is density, p is pressure, e is
the Navier–Stokes and the k-g model equations can be the molecular viscosity, k is the turbulent mixing energy,
reduced by 10 to 13 orders of magnitude in a few hun- g is the specific dissipation rate. The total energy and
dred cycles. enthalpy are E 5 e 1 k 1 uiui/2 and H 5 h 1 k 1 ui ui/

In the following section of this paper we will first outline 2, respectively, with h 5 e 1 p/r, and e 5 p/(c 2 1)r; c is
the basic governing equations including the k-g turbulence the ratio of specific heats. The other quantities are defined
model equations. The numerical method is presented in
Section 3. Section 4 shows the computational results for a
low pressure turbine cascade and an airfoil. eT 5 a*

rk
g

(6)

2. GOVERNING EQUATIONS Sij 5
1
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The Favre-averaged Navier–Stokes equations for a com-
pressible turbulent flow with a k-g model by Wilcox [10]

tij 5 2eT FSij 2
1
3

­uk

­xk
dijG22/3 rkdij (8)

can be summarized as follows:

Mass conservation,
t̂ij 5 2e FSij 2
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Momentum conservation, where PrL and PrT are the laminar and turbulent Prandtl
numbers, respectively. The closure coefficients are

­
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; (2) b 5 f;D , b* 5 a;L;, a 5 Gl

(11)
a* 5 1, s 5 As, s* 5 As.

Mean energy conservation,
3. NUMERICAL METHOD

Based on our previous work [11, 12], the above-de-­
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scribed equations are discretized by using a staggered finite
volume scheme. This scheme strongly couples the k-g and
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2 qjG; Navier–Stokes equations and maintains a small stencil for
the diffusion terms. In this paper, a correction term is
introduced to remove the possibility of an odd–even de-
coupling mode that may still be present in the discretizationTurbulent mixing energy,
of the diffusion terms. Through this correction the scheme
for diffusion terms becomes a compact one. A semi-loosely
coupled algorithm was used for integrating in time the­

­t
(rk) 1

­

­xj
(rujk) 5 tij

­ui

­xj
2 b*rgk

(4)
discrete finite-volume equations in our previous work [11,
12]. We present here a new strongly coupled approach for

1
­

­xj
F(e 1 s*eT)

­k
­xj
G; the Navier–Stokes and the k-g equations with multigrid.

The basic staggered finite volume discretization originally
proposed in [11] is outlined in Subsection 1. The correction
for the discretization of diffusion terms is presented inSpecific dissipation rate,
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In order to solve the k-g equations one could either
define k and g at the cell centers or the cell vertices. If k
and g were defined at the cell centers, one would have to
interpolate the strain tensor calculated at the cell vertices
to the cell center of V so that the production terms for
the control volume can be evaluated. On the other hand,
the eddy viscosity eT calculated from the k and g at the
cell centers must be translated to the cell vertices in order
to calculate the turbulent stresses there. This double aver-
aging process would broaden the final discretization stencil
for the coupled Navier–Stokes and the k-g equations and
thus reduce the accuracy and increase the likelihood of
uninhibited growing modes.

Alternatively, one can define k and g at the cell vertices
and use the staggered control volume V9 to integrate the
k-g equations. The discretization is done in a similar fash-
ion as that for the Navier–Stokes equations, but in the

FIG. 1. Staggered Control Volumes for a Mixed Cell-center and Cell- reverse order of using the original and the auxiliary cells.
vertex Scheme. Since the variables k and g are defined at the cell vertices

marked by the crosses, we will no longer need the excessive
averaging steps for the strain tensor and the eddy viscosity.
The production terms are evaluated at exactly the sameSubsection 2. Subsection 3 describes the strongly coupled
locations, namely the cell vertices, where the stress andmultigrid time-marching algorithm for solving the Navier–
strain tensors are calculated, and the eddy viscosity calcu-Stokes and the k-g equations.
lated from the k and g at these cell vertices are directly
used to calculate the turbulent stress tensors. In this way,

3.1. Staggered Finite Volume Scheme
the Navier–Stokes equations and the k-g equations in their
discrete forms are coupled as closely as possible. The dis-The computational domain is discretized into a number

of quadrilateral cells in two dimensions or hexahedral cells cretization of each set of the equations involves a stencil
of only nine points: those for the Navier–Stokes equationsin three dimensions. Consider a computational mesh in

two dimensions. The governing equations are applied to are shown by the circles and those for the k-g equation
are shown by the crosses in Fig. 1. The staggered finiteeach of the cells in integral form. With a cell-centered

scheme the flow variables r, rui , and rE are defined at volume approach proposed here for the conservative flow
variables and the k and g in the turbulence model equa-the cell centers marked by the circles in Fig. 1. Both the

convective and diffusive fluxes in the Navier–Stokes equa- tions much resembles the staggering of the pressure and
velocities used in the MAC and SIMPLE types of methodstions have to be estimated over the four cell faces of a

control volume, for example, the cell V shown in Fig. 1. [13, 14]. The velocity gradient calculated at the cell vertices
with the tightest possible stencil directly drives the solutionThe convective fluxes can be easily estimated by taking

the averages of the flow variables on either side of a cell of the turbulence model equations, just as the pressure
gradient calculated at a cell face directly drives the momen-face, yielding a five-point stencil for the total Euler flux

balance. To estimate the diffusion terms, a staggered auxil- tum equation in the MAC and SIMPLE schemes.
The scheme as presented above reduces to a centerediary control volume V9 was formed by connecting the cell-

centers A, B, C, D and the mid-points of the cell faces a, difference scheme for the convective terms in both the
Navier–Stokes equations and the k-g equations. In regionsb, c, and d as shown in Fig. 1. Since the flow variables are

defined at the vertices of this auxiliary cell, Gauss’s formula outside the boundary layer where the grid size is too large
to render the physical viscosity effective, dissipation termscan then be applied as in a vertex scheme to calculate the

velocity and temperature gradients at the center of the of fourth-order differences need to be added to eliminate
odd-and-even decoupling modes for the convective termsauxiliary cell, which in fact is the vertex of the original cell

V. Once the stresses are known at the cell vertices of V, and a second-difference dissipation is needed for capturing
shocks. The blended second- and foruth-order differencethe diffusive fluxes in the Navier–Stokes equations can

then be easily evaluated over the cell faces by trapezoidal formulation by Jameson [15] is used for the Navier–Stokes
equations. For subsonic flow the second-difference dissipa-rule as in a vertex scheme. This yields a discretization

stencil involving nine points with minimum spatial extent tion is turned off completely.
The staggered finite-volume approach may also be com-as shown by the circles in Fig. 1.
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tions shown by the circles in Fig. 1 does not completely
rule out the possibility of an odd–even decoupled mode.
Consider the Laplacian =2u 5 ­2u/­x2 1 ­2u/­y2, which is
the viscous diffusion term in the x-momentum equation
for an incompressible fluid. On a uniform cartesian grid
shown in Fig. 2, ­u/­x are calculated by using Gauss for-
mula over the staggered finite volume around the filled
circles (points A and B). In order to calculate the viscous
flux through the cell interface for the shaded finite volume
centered at point (l, m), ­u/­x at the center of the cell
interface (l 1 1/2, m) (point E) is obtained through averag-
ing the values of ­u/­x at the cell vertices (l 1 As, m 2 As)
and (l 1 As, m 1 As) (points A and B), resulting in a 6-point
stencil shown in Fig. 2 by the open circles. The numbers
beside the circles stand for the coefficients for those points
in the discretization. If we use the subscript averaged for
this ­u/­x so obtained, we get

FIG. 2. Finite-volume discretization stencil for ­u/­x.

S­u
­xDE,averaged
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1
4
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Dx
(14)

bined with upwind-type schemes. For instance, schemes
using second- or third-order MUSCL interpolation [16]
and Roe’s approximate Riemann solver [17] are imple- 1
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Dx
.

mented by the present authors in [12]. The flow over an
airfoil presented later in this paper is done with this upwind
type scheme for the Navier–Stokes equations. Notice that the right-hand side of Eq. (14) is, in fact, a

In principle, the artificial dissipation formulation of weighted averaging of the finite difference formulas for
blended second- and fourth-order differences may also be ­u/­x at (l 1 As, m 2 1), (l 1 As, m), and (l 1 As, m 1 1).
used for the k-g equations. However, it is noted that the This value of ­u/­x is then used to calculate the diffusion
k and g equations have very simple wave structures which flux through the cell face at (l 1 As, m), which is in turn
consist of essentially the flow convective velocities in the used to calculate the total flux balance for the cell (l, m).
three coordinate directions. Therefore, upwind schemes of If this is carried out for all the cell faces and also ­u/­y,
various orders can be easily formed, based on the local we get a discretization stencil for =2u shown in Fig. 3,
convective velocity at the interface of the control volume which can be written as
V9. For instance, if the estimated normal convective veloc-
ity on the interface AaB in Fig. 1 is positive, a second-
order upwind interpolation formula may be used to obtain
the values k and g at the interface mid-point a:

(k)a 5 As [3(k)l21,m 2 (k)l22,m] (12)

(g)a 5 As [3(g)l21,m 2 (g)l22,m]. (13)

These values are then used to form the convective fluxes
through the interface AaB. This is similar to the MUSCL-
type scheme for the Euler equations used by Anderson,
Thomas, and Van Leer [16]. In this way no explicit artificial
dissipation is required for the k-g equations, since the
upwinding is simply a way of introducing dissipation im-
plicitly.

3.2. Improvement on the Discretization of the
Diffusion Terms

As pointed out by Liu and Zheng [11], the 9-point
FIG. 3. Finite-volume discretization stencil for =2u.scheme for the diffusion terms in the Navier–Stokes equa-



MULTIGRID FOR NAVIER–STOKES AND k-g EQUATIONS 293

(=2u)averaged
(15)

5
As (ul11,m11 1 ul11,m21 1 ul21,m11 1 ul21,m21) 2 2ul,m

h2 ,

where h 5 Dx 5 Dy.
If we apply this to a Fourier component u 5 eI(glDx1gmDy),

where I 5 Ï21 and g is the wave frequency, the Fourier
symbol of the finite-difference operation is

Z 5
1
h2 H1

2
[e(IgDx1IgDy) 1 e(1IgDx2IgDy)

1 e(2IgDx 1IgDy) 1 e(2IgDx2IgDy)] 2 2J u

5 2
2
h2 [1 2 cos(gDx) cos(gDy)]u. FIG. 4. Five-point compact finite-difference stencil for =2u.

This implies that the scheme is insensitive to the Fourier
mode u 5 eI(fl1fm) corresponding to the highest frequency We here present a simple alternative, which is analogous
gDx 5 gDy 5 f, which is an odd–even decoupled mode to the approach used by Jameson and Caughey [18] in their
that can be easily identified in Fig. 3. The reason that this finite-volume method for the transonic potential equation.
scheme is insensitive to this odd–even decoupled mode is We continue evaluating and storing the stress tensor at
due to the averaging of the terms ­u/­x in Eq. (14). If we cell vertices as we do in our staggered finite-volume ap-
directly take proach, but we add a correction term to Eq. (14) to recover

the compact form given by Eq. (16). This correction term
can be easily identified asS­u

­xDE
5

ul11,m 2 ul,m

Dx
, (16)

2
1
4 FS­u

­xDl,m11
2 2 S­u

­xDl,m
1 S­u

­xDl,m21
G

(18)we will then obtain the usual five-point finite difference
stencil for =2u 5 ­2u/­x2 1 ­2u/­y2 shown in Fig. 4. We P 2

1
4

­2

­y2 S­u
­xDl,m

Dy2.
will call it the compact form for =2u

In other words, we can write(=2u)compact
(17)
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The Fourier symbol of this operator is With a curvilinear grid as shown in Fig. 5, we have

­u
­x

5
­u
­j

jx 1
­u
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hx . (20)Z 5 2
2
h2 [(1 2 cos(gDx)) 1 (1 2 cos(gDy))]u

This is equivalent to using Gauss formula, provided thewhich does not allow any odd–even decoupled modes.
metric coefficient jx and hx are appropriately interpreted.Clearly, in order to get the compact scheme (17), one must
The problem with our staggered finite-volume approachevaluate ­ui/­xj at the center of the cell interfaces in a
comes from the h direction averaging of the ­/­j deriva-finite-volume method. Since there are twice as many (three
tives. A correction term is needed to make ­u/­j compact:times in 3D) cell faces as cell vertices for typical quadrilat-

eral grids, directly evaluating and storing the stress tensor
at the center of cell faces will require extra storage and S­u

­j
D

compact
5 S­u

­j
D

averaged
2

1
4

­2

­h2 S­u
­j
D

l, m
Dh2.

computational time.
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the two cells on either side, they preserve the conserva-
tiveness of the overall finite-volume scheme. Their function
is to convert our 9-point finite-volume discretization into
approximately a compact 5-point finite difference scheme
for the diffusion terms so that no odd–even decoupled
modes will occur. It must also be pointed out that the
correction terms do not change the second-order accuracy
of the scheme and there are no free parameters involved.

If we consider the cell-interface in the h direction, we get

­u
­x

5 S­u
­xDaveraged

2
1
4 S ­

­h
­2u
­j2D

l,m11/2

Sh
x

Vol
Dj2 (25)

­u
­y

5 S­u
­xDaveraged

2
1
4 S ­

­h
­2u
­j2D

l,m11/2

Sh
y

Vol
Dj2 (26)

FIG. 5. Finite-volume discretization stencil on a curvilinear grid.
and similar equations for ­v/­x and ­v/­y.

Similar corrections are also formed for the diffusion
terms in the k-g equations. As mentioned in Liu and Zheng

Note that the ­u/­h term does not cause odd–even de- [11], our experience shows that in most cases such correc-
coupling on the computational domain. Consequently, no tion terms are not needed. It seems that the added artificial
correction is needed. Thus we use the following to estimate dissipation for the convective terms or the intrinsic dissipa-
the partial derivatives at the cell surfaces in order to calcu- tion in an upwind scheme is enough to damp out the proba-
late the diffusive flux balance over a control volume, ble odd–even decoupled mode for the diffusive terms.

However, it appears that problems may arise in regions of
small shear where oscillating shearing forces may appear.­u

­x
5 S­u

­xDaveraged
2

1
4 S ­

­j

­2u
­h2D

l11/2, m

S j
x

Vol
Dh2, (21) This situation was found in our RAE airfoil test case. In

the wake of the airfoil right after the trailing edge, one can
observe sawtooth-like distribution of the shearing force.where S j

x is the x component of the cell surface area vector
Because of the use of the trapezoidal rule in evaluatingS, Vol is the average volume of the cells on either side of
the diffusive fluxes, such sawtooth variations of shearingthe cell interface.
forces were undetected by the viscous diffusivity. AfterSimilarly, we get
implementing the correction terms the saw-tooth varia-
tions were completely eliminated.
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3.3. Multigrid Algorithm for the k-g Equations

After discretized in space, the governing equations are­v
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5 S­v
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S j
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Vol
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reduced to a set of ordinary differential equations in time,
which can be solved by using a hybrid multistage scheme as
proposed by Jameson, Schmidt, and Turkel [19]. Residual­v

­y
5 S­v

­yDaveraged
2

1
4 S ­

­j
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l11/2, m
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Vol
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smoothing and multigrid acceleration can be applied to
the Navier–Stokes equations as described in Jameson [15],
Martinelli and Jameson [2], and Liu and Jameson [6]. TheSince the correction terms involve only simple differ-
time integration for the k-g equations needs some specialences on the computational plane, minor computational
attention. The semi-discrete k-g equations can be writ-effort is required. In the computer program, the ­2u/­h2

ten asin the above equations is calculated by central differencing
at the cell centers first, then their first differences normal
to the cell face, ­/­j, are calculated and appended to the ­

­t
(rk) 1 Rk(rk, rg) 5 0 (27)diffusion fluxes during the assemblage of the diffusion

terms. Notice that the correction terms are only needed
in evaluating the diffusive fluxes through the cell faces. ­

­t
(rg) 1 Rg(rk, rg) 5 0, (28)

Since they are uniquely defined at each cell interface for
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where Rk and Rg are the residuals for the k and g, respec- the negative contribution of the source terms in the k and
g equations can be moved to the left-hand side of Eq. (27)tively:
and (28) to form an implicit time-marching formula within
each stage of the multistage scheme. Thus, we have

Rk(rk, rg) 5
1

V9
(Ck 2 Dk) 2 Sk (29)

[1 1 Dt D1][(rk)n11 2 (rk)n] 1 Dt
b*
r

[(rk)n11(rg)n11

Rg(rk, rg) 5
1

V9
(Cg 2 Dg) 2 Sg . (30)

2 (rk)n(rg)n] 5 2Rn
k Dt (34)

Ck and Cg are the discrete forms of the convective terms
[1 1 Dta D1][(rg)n11 2 (rg)n] 1 Dt

b*
r

[(rg)n11(rg)n11
in the k and g equations, respectively, and Dk and Dg are
the corresponding diffusive terms; Sk and Sg are the discrete

2 (rg)n(rg)n] 5 2Rn
g Dt. (35)forms of the source terms which can be written in a lesser

nonlinear form than in Eqs.(4) and (5) as
There are several ways to solve the above two nonlinear
equations. Notice that Eq. (35) is independent of (rk)n11

and can be solved exactly by using the root formula forSk 5 etPd 2
2
3 S= ? uD (rk) 2

b*
r

(rg)(rk) (31)
quadratic equations. After obtaining (rg)n11, (rk)n11 can
be obtained by Eq. (34). Alternatively one may linearize
Eq. (35) to avoid solving the quadratic equation forSg 5 aa*rPd 2 a

2
3 S= ? uD (rg) 2

b
r

(rg)2. (32)
(rg)n11. Yet, another method, which is used in the current
calculations, is to linearize both Eqs. (34) and (35) and
write the solution in the following delta formwhere

Pd 5 As(«2
11 1 «2

22 1 «2
33) 1 «2

12 1 «2
13 1 «2

23 d(rg)n 5 Dt
2Rn

g

1 1 Dt(aD1 1 2bgn)
(36)

«ij 5 2 SSij 2
1
3

­uk

­xk
dijD ;

d(rk)n 5 Dt
2Rn

k 2 b*(k)n d(rg)n

1 1 Dt(D1 1 b*gn)
, (37)

Sij is the velocity strain rate as defined in Eq. (7).
whereThe etPd and a a*Pd terms are the major parts of produc-

tion for k and g and are always positive. The 2Sd(= ? u)(rk)
d(rk)n 5 (rk)n11 2 (rk)n (38)and 2Sds(= ? u)(rg) terms are two minor parts for the pro-

duction of k and g, which, however, may be either positive d(rg)n 5 (rg)n11 2 (rg)n. (39)
or negative. When the flow is undergoing an expansion,
= ? u . 0, they dissipate k or g. Conversely, when the flow In a loosely coupled approach, the Navier–Stokes equa-
is undergoing compression, they produce k or g. The 2(b*/ tions and the k-g equations would be marched in time
r)(rg)(rk) and the 2(b/r)(rg)2 are the dissipation terms separately. When the Navier–Stokes equations were
which are always negative and thus annihilate k and g. marched in time, the values of k, g, and et would be frozen.
The larger these terms, the faster k and g decay, but the When the k-g equations were marched, the flow variables
system, however, becomes more stiff because of the larger r, rui , and rE would be fixed. In Liu and Zheng [11] a
negative eigenvalues. The explicit time-marching formula semi-loosely coupled approach was used. A five-stage time-
for the k and g equations within each stage of a multistage stepping scheme with three evaluations of the viscous terms
time-stepping scheme can be modified to treat parts of was employed for the Navier–Stokes equations. The k-g
the source terms implicitly so that time steps are not too equations were marched separately, one or more time
severely restricted due to the stiffness of the k-g equations. steps, with the same five-stage scheme at the first, third,
This in general will affect the time accuracy of a multistage and fifth stages of the five-stage time stepping for the Na-
time-stepping scheme. But since we are interested in reach- vier–Stokes equations when the viscous terms were evalu-
ing a steady state solution, the time accuracy is of lesser ated. Multigrid and residual smoothing were applied to
concern than obtaining a scheme with faster convergence the Navier–Stokes equations (see [6, 15, 20]) but not to
to steady state. If we define the k-g equations. As such, it was found that the conver-

gence of the k-g equations usually lagged behind the Na-
vier–Stokes equations. Consequently, Liu and Zheng [11]D1 5 Max(0, Sd = ? u), (33)
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marched the k-g equation four time steps for each of the physical reasons. This is expressed in the following equa-
tion taken from [12]:three updates of the k-g equations within each time step

for the Navier–Stokes equations in order to obtain good
convergence for the overall system. (rg)min 5 aa*rÏPd. (41)

Just as in the case of spatial discretization, the coupling
between the Navier–Stokes equations and the two-equa- In a single grid application, this limit can be directly im-
tion turbulence model equations has significant effect on posed on g at every time step. In a multigrid application,
the convergence of the complete system. It is anticipated direct application of the above limit appears to hinder the
that a strongly coupled approach would result in faster effectiveness of multigrid. To avoid this problem, this limit
convergence. Therefore, the Navier–Stokes equations and is imposed by limiting the residuals of the g equation
the k-g equations are here marched in time simultaneously calculated on the fine grids before they are passed to the
with the same five-stage time-stepping scheme. Neither the coarse grids as
k and g values, nor the flow variables in the Navier–Stokes
equations are frozen in calculating the residuals of the
Navier–Stokes and the turbulence model equations within R*g 5 Rg 2 Max S0,

(rg)min 2 (rg)E

Dt D (42)
the multistage time stepping. Residual smoothing and
multigrid are applied uniformly to both the Navier–Stokes

(rg)E 5 (rg) 2
DtRg

1 1 Dt(aD1 1 2bg)
, (43)and the turbulence model equations. In this way the gov-

erning equations (1)–(5) are treated truly as a single system
of coupled equations.

where R*g is the limited residual, (rg)E is the predictedThere are, however, two modifications. First, one may
rg, based on the original residual Rg .have the option to update the eddy viscosity by Equation

During the multigrid cycle, the residuals on a fine grid(6) only at the end of each time step although the flow
are passed down to the next coarse grid as forcing termsvariables r, rui , rE, and k and g are updated within each
that are used to drive the update on the coarse grid. Sincestage of the time step. Second, even though the Navier–
k and g are defined at cell vertex, their values on the coarseStokes and the k-g equations are marched simultaneously,
grid are transferred directly from the corresponding vertexone may still have the option to use different time steps
on the fine grid. As discussed in the previous section, theto reach steady state. The time step limit for the k-g equa-
production term Pd has an important role on the solutionstions can be estimated by the following equations with the
of k and g. As such it is only calculated on the finest meshCourant number CFL also possibly different from that for
to preserve its accuracy. The values calculated on the finestthe Navier–Stokes equations,
grid are then passed down to the coarse grids and used as
source terms to drive the solution of k and g. The correc-

Dt 5
CFL ? V9

S uu ? Si 1 sS (S2(e 1 et)/rV9
, (40) tion calculated on each grid is passed back to the next finer

grid by bilinear interpolation. To further accelerate the
solution, implicit residual smoothing is also used for thewhere V9 is the cell volume of the staggered cell shown in
k-g equations. With the help of this technique, the allow-Fig. 1, S is the face area vector of the cell in each coordinate
able time steps are increased significantly. CFL values ofdirection, S is the cell face area, and the summation is over
around 7 can be used.all three directions in a three-dimensional problem.

In a very recent paper, Mohammadi and Pironneau [21]
4. BOUNDARY CONDITIONSpresented an implicit treatment of the source terms of the

incompressible k-« equation in a multistep method in which
H-type meshes are used for cascade flows and C-type

the convection and diffusion operators are split and
meshes are used for airfoil flows. Boundary conditions for

marched in time separately. They also proved that their
the Navier–Stokes equations are set in the same manner

implicit treatment guarantees positivity of k and « with a
as outlined in [11]. Appropriate boundary conditions for

Lagrangian finite element method under certain condi-
the k-g equations must be imposed in the far field and on

tions. It is likely that the implicit treatment of the source
solid walls. In the far field a small value of the turbulent

terms in the compressible k-g equations proposed in this
kinetic energy is specified. In our calculations k 5 1026. The

paper may also preserve positivity under certain condi-
freestream values of g is estimated by using the following

tions. However, even if the numerical scheme may guaran-
equation as Menter proposed [22]

tee the positivity of k and g, the computation may lead to
low levels of g that is not physical, resulting in excessively
large values of eddy viscosity. In order to prevent this, gy 5 O S10

Uy

L D . (44)
Zheng and Liu [12] derived a lower limit for g based on
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At solid walls k 5 0. The specific dissipation rate g does
not have a natural boundary condition. Its asymptotic be-
havior is specified as

g R
6nw

by2 as the wall distance y R 0. (45)

In our calculations, the boundary condition of g is imposed
at the first point away from the wall by using the above
equation. Theoretically, g is infinite at the wall. One could
simply set a large value there. However, since what we
really need is to impose the asymptotic behavior specified
by Eq. (45) and the value at the wall is really not useful
except to obtain the value of g at the cell interface for the
third grid point from the wall through the use of Eq. (13),
the g value at the wall can be set to ensure that the interpo-
lated value (g)a at the cell interface also satisfies the asymp-
totic solution specified in Eq. (45) for a positive normal
convective velocity from the wall. Thus, the g at wall is
set to be

g0 5
19
9

6nw

by2
1

, (46)

where y1 is the distance from the wall of the first grid point.
In the near wall region, the g equation is dissipation

dominant. As shown in Eq. (45), g decays very rapidly as
one moves away from the wall. During the multigrid cycle, FIG. 6. Isentropic Mach Number Distribution over a Turbine Cascade
the coarse grids cannot resolve such great variation. There- at an Off-design Condition.
fore g values at the wall and the first grid point are passed
down without updating on each grid level.

On outlet boundaries where the flow velocity in the by assuming a constant total pressure equal to the upstream
outer normal of the boundary is positive, only the pressure total pressure. The experimental Reynolds number based
is specified. All other variables are extrapolated. on exit velocity and blade chord length for this test case

For airfoil flows, one-dimensional Riemann invariants is 2.9 3 105. Although the blade is linear, the side walls
are used to form nonreflection boundary conditions if the have a 68 divergence. Therefore, a purely two-dimensional
flow is subsonic (see Jameson, Schmidt, and Turkel [19] calculation would underpredict the isentropic Mach num-
and Jameson [15]). For supersonic flows, all the flow quan- ber on the forward part of the blade for the same exit
tities are set to the free stream values at the inflow. They Mach number. To avoid that, the stream tube thickness
are extrapolated from the interior at the outflow part of correction as described in Liu and Zheng [11] is used. The
boundary. computational mesh, which contains 161 3 49 grid points,

and all flow conditions used in the current calculation are
5. COMPUTATIONAL RESULTS the same as in [11]. The only difference is that we now

use the new strongly coupled time integration with
5.1. Cascade Flows

multigrid and residual smoothing for both the Navier–
Stokes and turbulence model equations.To demonstrate the efficiency of the multigrid algorithm

for the k-g equations, we recalculate the turbine cascade A difficult test condition for this cascade is when the
incoming flow has a negative incidence angle of 20.38 rela-flows that we did in Ref. [11]. The cascade was tested by

Hodson and Dominy [23–25]. At its design condition this tive to the design condition. In this case there is a large
separation bubble on the pressure surface. Usually thiscascade has an exit isentropic Mach number of 0.7 and an

incidence angle of 38.88. The isentropic Mach number, causes slow convergence. Figure 6 shows the isentropic
Mach number distribution over the cascade. The flat regionoften used by the turbomachinery community, is defined

as the Mach number calculated from local static pressure of the isentropic Mach number distribution on the pressure
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FIG. 7. Comparison of Convergence histories against CPU time for
the semi-loosely coupled and the strongly coupled methods. FIG. 8. Convergence history for the off-design cascade case.

side of the blade signifies the large separation bubble in
the flow. The computed flow field as shown in Fig. 6 has no
difference from that obtained by the semi-loosely coupled
method in [11]. Figure 7 shows the comparison of the
convergence history against CPU time by the loosely cou-
pled algorithm and that by the strongly coupled algorithm.
The implicit treatment of the source terms and the correc-
tion of the diffusive operators are used in both computa-
tions. It is seen that the computational time is reduced by
more than half with the strongly coupled multigrid method.
If the calculations are continued, the residuals keep going
down continuously. As shown in Fig. 8, the residuals of
mass conservation, k and g equations are driven down
more than 11 orders of magnitude in less than 1000
work units.

At the design conditions, the flow through this cascade
does not have the large separation on the pressure side of
the blade. Figure 9 shows the computed isentropic Mach
number against experimental data. The flat isentropic
Mach number distribution on the pressure surface is no
longer present. Because of the absence of the large separa-
tion, the convergence of the computation is even better.
As shown in Fig. 10, the residuals of each equation is driven
to machine zero within 700 work units.

5.2. Transonic Airfoil Flow

This method is extended to compute the airfoil flows. FIG. 9. Isentropic Mach number distribution over a turbin cascade
at its design condition.The flow over the RAE airfoil is calculated with an upwind
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FIG. 10. Convergence history for the cascade case at design condition.

version of our program using a MUSCL type second-order
interpolation [16] and Roe’s approximate Riemann solver FIG. 11. Pressure Distribution for the RAE2822 airfoil case #6.
[17] for the convective terms (see Zheng and Liu [12]).
Test data of this airfoil were reported by Cook, McDonald,
and Firmin in [26]. Computation of the test case number
6 in [26] is presented here. The free stream mach number
of the flow is 0.725 for this case. The Reynolds number is
6.5 3 106 based on chord length. The nominal experimental
angle of attack is 2.928 but is adjusted to 2.48 to account
for wall interference. This adjustment is the same as used
by Martinelli and Jameson [2]. Figure 11 shows the calcu-
lated pressure coefficient compared with experimental
data. The shock wave is captured almost exactly, showing
very good promise of the k-g model in the simulation
of transonic airfoil flows. The experimental normal force
coefficient, pitching moment coefficient around 0.25 chord,
and the drag coefficient are cN 5 0.743, cm 5 20.095, and
cd 5 0.0127, respectively. The computational results give
cN50.770, cm 5 20.098, and cd 5 0.0163 which includes
both wave and skin-friction drag.

Figure 12 shows the convergence history for 300 time
steps with three levels of multigrid for both the semi-
loosely coupled approach and the strongly coupled ap-
proach. Again it is seen that the latter approach yields a
better convergence rate. However, the overall convergence
rate for this case is slower, compared to the cascade flow
calculations. This is due to the higher grid aspect and
stretching ratios at the specified Reynolds number and the
larger extent of the computational domain for this case.

FIG. 12. Convergence history for the RAE2822 airfoil case #6.The far field boundary is 18 chord lengths away from the



300 LIU AND ZHENG

airfoil for this calculation. Nevertheless, the convergence REFERENCES
rate is seen to be comparable to that shown by Martinelli

1. J. L. Steger, AIAA J. 16(7), 679 (1978).and Jameson [2] with a multigrid code using central differ-
2. L. Martinelli and A. Jameson, AIAA Paper-88-0414, January 1988encing, scalar artificial disspation, and the Baldwin–Lomax

(unpublished).algebraic turbulence model. Further increase of conver-
3. D. J. Mavriplis, AIAA J. 29(12), 2086 (1991).gence for multigrid methods may hinge on proper precon-
4. R. R. Varma and D. A. Caughey, AIAA Paper 91-1571, June 1991ditioning to relieve the stiffness due to grid stretching and

(unpublished).
large cell aspect ratios.

5. M. Giles, J. Turbomach. Trans. ASME 115(1), 110 (1993).

6. F. Liu and A. Jameson, AIAA J. 31(10), 1785(1993).6. SUMMARY
7. M. G. Turner and I. K. Jennions, ASME 92-GT-308, 1992 (unpub-

lished).A strongly coupled multigrid algorithm is developed for
solving the Navier–Stokes and Wilcox’s k-g two-equation 8. R. F. Kunz and B. Lakshminarayana, AIAA J. 30(1), 13 (1992).
turbulence model equations. The Navier–Stokes and the 9. H. Lin, D. Y. Yang, and C. C. Chieng, AIAA Paper 93-3316, July

1993; 11th AIAA Computational Fluid Dynamics Conference.turbulence model equations are treated as a single system
10. D. C. Wilcox, AIAA J. 26(11), 1299 (1988).of equations and marched in time by the same multistage

scheme with multigrid. Source terms in the turbulence 11. F. Liu and X. Zheng, AIAA J. 32(8), 1589 (1994).
equations are treated implicitly within each stage of the 12. X. Zheng and F. Liu, AIAA J. 33(6), 991 (1995).
multistage time stepping. Results for a turbine cascade 13. F. H. Harlow and J. E. Welch, Phys. Fluids 8, 2182 (1965).
shows that the method greatly increases the computational 14. S. V. Patanka, Numerical Heat Transfer and Fluid Flow (Hemisphere,
efficiency compared to a semi-loosely coupled algorithm. Washington, DC 1980).
Residuals of both the Navier–Stokes equations and the k- 15. A. Jameson, MAE Report 1651, Department of Mechanical and

Aerospace Engineering, Princeton University, 1983 (unpublished).g equations can be reduced to machine zero in less than
1000 work units. 16. W. K. Anderson, J. L. Thomas, and B. Van Leer, AIAA J. 24(9),

1453 (1986).A correction method for removing potential odd–even
17. P. L. Roe, J. Comput. Phys. 43(7), 357 (1981).decoupled modes in the finite-volume discretization of dif-

fusion terms is also presented. This method does not re- 18. A. Jameson and D. A. Caughey, AIAA Paper 77-635, 1977 (unpub-
lished).quire storing and calculating the stress tensor for every

19. A. Jameson, W. Schmidt, and E. Turkel, AIAA Paper 81-1259,cell face. Thus, it needs less memory and computer time.
1981 (unpublished).Yet, it can convert a 9-point finite-volume discretization

20. F. Liu, Ph.D. dissertation, Department of Mechanical and Aerospacestencil into approximately a compact 5-point finite differ-
Engineering, Princeton University, June 1991 (unpublished).ence stencil. Such corrections may be needed to prevent

21. B. Mohammadi and O. Pironneau, Int. J. Numer. Methods Fluids 20,computational results of oscillating shear stresses.
819 (1995).

22. F. R. Menter, AIAA J. 30(6), 1657 (1992).ACKNOWLEDGEMENT
23. H. P. Hodson and R. G. Dominy, J. Eng. Gas Turbines Power 107

This research was supported in part by the California Space Institute (1985).
under Grant CS-35-92, the National Science Foundation under grant 24. H. P. Hodson and R. G. Dominy, J.Turbomach. 109(2), 177 (1987).
CTS-9410800 and the Academic Senate Committee on Research at UC

25. H. P. Hodson and R. G. Dominy, J. Turbomach. 109(2), 201 (1987).Irvine. Computer time was provided on the Convex-C240 computer by
the Office of Academic Computing at UC Irvine and on the Cray-YMP 26. M. A. McDonald, P. H. Cook, and M. C. P. Firmin, AGARD Advisory

Report No. 138, May 1979 (unpublished).by the San Diego Super Computer Center.


